Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 43(32): 5753-5768, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37344234

RESUMO

Axon fasciculation is thought to be a critical step in neural circuit formation and function. Recent studies have revealed various molecular mechanisms that underlie axon fasciculation; however, the impacts of axon fasciculation, and its corollary, defasciculation, on neural circuit wiring remain unclear. Corticospinal (CS) neurons in the sensorimotor cortex project axons to the spinal cord to control skilled movements. In rodents, the axons remain tightly fasciculated in the brain and traverse the dorsal funiculus of the spinal cord. Here we show that plexinA1 (PlexA1) and plexinA3 (PlexA3) receptors are expressed by CS neurons, whereas their ligands, semaphorin-5A (Sema5A) and semaphorin-5B (Sema5B) are expressed in the medulla at the decussation site of CS axons to inhibit premature defasciculation of these axons. In the absence of Sema5A/5B-PlexA1/A3 signaling, some CS axons are prematurely defasciculated in the medulla of the brainstem, and those defasciculated CS axons aberrantly transverse in the spinal gray matter instead of the spinal dorsal funiculus. In the absence of Sema5A/Sema5B-PlexA1/A3 signaling, CS axons, which would normally innervate the lumbar spinal cord, are unbundled in the spinal gray matter, and prematurely innervate the cervical gray matter with reduced innervation of the lumbar gray matter. In both Sema5A/5B and PlexA1/A3 mutant mice (both sexes), stimulation of the hindlimb motor cortex aberrantly evokes robust forelimb muscle activation. Finally, Sema5A/5B and PlexA1/A3 mutant mice show deficits in skilled movements. These results suggest that proper fasciculation of CS axons is required for appropriate neural circuit wiring and ultimately affect the ability to perform skilled movements.SIGNIFICANCE STATEMENT Axon fasciculation is believed to be essential for neural circuit formation and function. However, whether and how defects in axon fasciculation affect the formation and function of neural circuits remain unclear. Here we examine whether the transmembrane proteins semaphorin-5A (Sema5A) and semaphorin-5B (Sema5B), and their receptors, plexinA1 (PlexA1) and plexinA3 (PlexA3) play roles in the development of corticospinal circuits. We find that Sema5A/Sema5B and PlexA1/A3 are required for proper axon fasciculation of corticospinal neurons. Furthermore, Sema5A/5B and PlexA1/A3 mutant mice show marked deficits in skilled motor behaviors. Therefore, these results strongly suggest that proper corticospinal axon fasciculation is required for the appropriate formation and functioning of corticospinal circuits in mice.


Assuntos
Semaforinas , Feminino , Masculino , Camundongos , Animais , Semaforinas/metabolismo , Fasciculação Axônica , Neurônios/metabolismo , Axônios/fisiologia , Medula Espinal/metabolismo
2.
Cereb Cortex ; 30(11): 5702-5716, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32564090

RESUMO

Axon regeneration is limited in the central nervous system, which hinders the reconstruction of functional circuits following spinal cord injury (SCI). Although various extrinsic molecules to repel axons following SCI have been identified, the role of semaphorins, a major class of axon guidance molecules, has not been thoroughly explored. Here we show that expression of semaphorins, including Sema5a and Sema6d, is elevated after SCI, and genetic deletion of either molecule or their receptors (neuropilin1 and plexinA1, respectively) suppresses axon retraction or dieback in injured corticospinal neurons. We further show that Olig2+ cells are essential for SCI-induced semaphorin expression, and that Olig2 binds to putative enhancer regions of the semaphorin genes. Finally, conditional deletion of Olig2 in the spinal cord reduces the expression of semaphorins, alleviating the axon retraction. These results demonstrate that semaphorins function as axon repellents following SCI, and reveal a novel transcriptional mechanism for controlling semaphorin levels around injured neurons to create zones hostile to axon regrowth.


Assuntos
Regulação da Expressão Gênica/fisiologia , Regeneração Nervosa/fisiologia , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Semaforinas/biossíntese , Traumatismos da Medula Espinal/metabolismo , Animais , Axônios/patologia , Camundongos , Camundongos Endogâmicos C57BL , Tratos Piramidais/lesões , Tratos Piramidais/metabolismo , Traumatismos da Medula Espinal/patologia
3.
J Neurosci ; 40(28): 5402-5412, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32471877

RESUMO

Axon guidance molecules and neuronal activity have been implicated in the establishment and refinement of neural circuits during development. It is unclear, however, whether these guidance molecule- and activity-dependent mechanisms interact with one another to shape neural circuit formation. The formation of corticospinal (CS) circuits, which are essential for voluntary movements, involves both guidance molecule- and activity-dependent components during development. We previously showed that semaphorin6D (Sema6D)-plexinA1 (PlexA1) signaling eliminates ipsilateral projections of CS neurons in the spinal cord, while other studies demonstrate that CS projections to the spinal cord are eliminated in an activity-dependent manner. Here we show that inhibition of cortical neurons during postnatal development causes defects in elimination of ipsilateral CS projections in mice. We further show that mice that lack the activity-dependent Bax/Bak pathway or caspase-9 similarly exhibit defects in elimination of ipsilateral CS projections, suggesting that the activity-dependent Bax/Bak-caspase-9 pathway is essential for the removal of ipsilateral CS projections. Interestingly, either inhibition of neuronal activity in the cortex or deletion of Bax/Bak in mice causes a reduction in PlexA1 protein expression in corticospinal neurons. Finally, intracortical microstimulation induces activation of only contralateral forelimb muscles in control mice, whereas it induces activation of both contralateral and ipsilateral muscles in mice with cortical inhibition, suggesting that the ipsilaterally projecting CS axons that have been maintained in mice with cortical inhibition form functional connections. Together, these results provide evidence of a potential link between the repellent signaling of Sema6D-PlexA1 and neuronal activity to regulate axon elimination.SIGNIFICANCE STATEMENT Both axon guidance molecules and neuronal activity regulate axon elimination to refine neuronal circuits during development. However, the degree to which these mechanisms operate independently or cooperatively to guide network generation is unclear. Here, we show that neuronal activity-driven Bax/Bak-caspase signaling induces expression of the PlexA1 receptor for the repellent Sema6D molecule in corticospinal neurons (CSNs). This cascade eliminates ipsilateral projections of CSNs in the spinal cord during early postnatal development. The absence of PlexA1, neuronal activity, Bax and Bak, or caspase-9 leads to the maintenance of ipsilateral projections of CSNs, which can form functional connections with spinal neurons. Together, these studies reveal how the Sema6D-PlexA1 signaling and neuronal activity may play a cooperative role in refining CS axonal projections.


Assuntos
Axônios/metabolismo , Caspases/metabolismo , Tratos Piramidais/crescimento & desenvolvimento , Semaforinas/metabolismo , Transdução de Sinais/fisiologia , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo , Animais , Orientação de Axônios/fisiologia , Camundongos , Vias Neurais/crescimento & desenvolvimento , Vias Neurais/metabolismo , Neurônios/fisiologia , Tratos Piramidais/metabolismo
4.
J Neurosci ; 39(45): 8885-8899, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31537704

RESUMO

Corticospinal (CS) neurons in layer V of the sensorimotor cortex are essential for voluntary motor control. Those neurons project axons to specific segments along the rostro-caudal axis of the spinal cord, and reach their spinal targets by sending collateral branches interstitially along axon bundles. Currently, little is known how CS axon collaterals are formed in the proper spinal cord regions. Here, we show that the semaphorin3A (Sema3A)-neuropilin-1 (Npn-1) signaling pathway is an essential negative regulator of CS axon collateral formation in the spinal cord from mice of either sex. Sema3A is expressed in the ventral spinal cord, whereas CS neurons express Npn-1, suggesting that Sema3A might prevent CS axons from entering the ventral spinal cord. Indeed, the ectopic expression of Sema3A in the spinal cord in vivo inhibits CS axon collateral formation, whereas Sema3A or Npn-1 mutant mice have ectopic CS axon collateral formation within the ventral spinal cord compared with littermate controls. Finally, Npn-1 mutant mice exhibit impaired skilled movements, likely because of aberrantly formed CS connections in the ventral spinal cord. These genetic findings reveal that Sema3A-Npn-1 signaling-mediated inhibition of CS axon collateral formation is critical for proper CS circuit formation and the ability to perform skilled motor behaviors.SIGNIFICANCE STATEMENT CS neurons project axons to the spinal cord to control skilled movements in mammals. Previous studies revealed some of the molecular mechanisms underlying different phases of CS circuit development such as initial axon guidance in the brain, and midline crossing in the brainstem and spinal cord. However, the molecular mechanisms underlying CS axon collateral formation in the spinal gray matter has remained obscure. In this study, using in vivo gain-of- and loss-of-function experiments, we show that Sema3A-Npn-1 signaling functions to inhibit CS axon collateral formation in the ventral spinal cord, allowing for the development of proper skilled movements in mice.


Assuntos
Orientação de Axônios , Movimento , Tratos Piramidais/metabolismo , Semaforina-3A/metabolismo , Animais , Feminino , Aprendizagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuropilina-1/genética , Neuropilina-1/metabolismo , Tratos Piramidais/crescimento & desenvolvimento , Tratos Piramidais/fisiologia , Semaforina-3A/genética , Transdução de Sinais
5.
Cell Rep ; 23(5): 1286-1300.e7, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29719245

RESUMO

Little is known about the organizational and functional connectivity of the corticospinal (CS) circuits that are essential for voluntary movement. Here, we map the connectivity between CS neurons in the forelimb motor and sensory cortices and various spinal interneurons, demonstrating that distinct CS-interneuron circuits control specific aspects of skilled movements. CS fibers originating in the mouse motor cortex directly synapse onto premotor interneurons, including those expressing Chx10. Lesions of the motor cortex or silencing of spinal Chx10+ interneurons produces deficits in skilled reaching. In contrast, CS neurons in the sensory cortex do not synapse directly onto premotor interneurons, and they preferentially connect to Vglut3+ spinal interneurons. Lesions to the sensory cortex or inhibition of Vglut3+ interneurons cause deficits in food pellet release movements in goal-oriented tasks. These findings reveal that CS neurons in the motor and sensory cortices differentially control skilled movements through distinct CS-spinal interneuron circuits.


Assuntos
Córtex Motor , Movimento/fisiologia , Rede Nervosa , Tratos Piramidais , Córtex Somatossensorial , Sinapses/fisiologia , Sistemas de Transporte de Aminoácidos Acídicos/genética , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Animais , Interneurônios/citologia , Interneurônios/fisiologia , Camundongos , Camundongos Transgênicos , Córtex Motor/citologia , Córtex Motor/fisiologia , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Tratos Piramidais/citologia , Tratos Piramidais/fisiologia , Córtex Somatossensorial/citologia , Córtex Somatossensorial/fisiologia
6.
Science ; 357(6349): 400-404, 2017 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-28751609

RESUMO

Superior manual dexterity in higher primates emerged together with the appearance of cortico-motoneuronal (CM) connections during the evolution of the mammalian corticospinal (CS) system. Previously thought to be specific to higher primates, we identified transient CM connections in early postnatal mice, which are eventually eliminated by Sema6D-PlexA1 signaling. PlexA1 mutant mice maintain CM connections into adulthood and exhibit superior manual dexterity as compared with that of controls. Last, differing PlexA1 expression in layer 5 of the motor cortex, which is strong in wild-type mice but weak in humans, may be explained by FEZF2-mediated cis-regulatory elements that are found only in higher primates. Thus, species-dependent regulation of PlexA1 expression may have been crucial in the evolution of mammalian CS systems that improved fine motor control in higher primates.


Assuntos
Lateralidade Funcional/genética , Regulação da Expressão Gênica , Córtex Motor/metabolismo , Neurônios Motores/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Tratos Piramidais/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Proteínas de Ligação a DNA/metabolismo , Evolução Molecular , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Mutantes , Proteínas do Tecido Nervoso/genética , Regiões Promotoras Genéticas , Receptores de Superfície Celular/genética , Semaforinas/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética
7.
Neuron ; 94(3): 626-641.e4, 2017 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-28472660

RESUMO

Early postnatal mammals, including human babies, can perform only basic motor tasks. The acquisition of skilled behaviors occurs later, requiring anatomical changes in neural circuitry to support the development of coordinated activation or suppression of functionally related muscle groups. How this circuit reorganization occurs during postnatal development remains poorly understood. Here we explore the connectivity between corticospinal (CS) neurons in the motor cortex and muscles in mice. Using trans-synaptic viral and electrophysiological assays, we identify the early postnatal reorganization of CS circuitry for antagonistic muscle pairs. We further show that this synaptic rearrangement requires the activity-dependent, non-apoptotic Bax/Bak-caspase signaling cascade. Adult Bax/Bak mutant mice exhibit aberrant co-activation of antagonistic muscle pairs and skilled grasping deficits but normal reaching and retrieval behaviors. Our findings reveal key cellular and molecular mechanisms driving postnatal motor circuit reorganization and the resulting impacts on muscle activation patterns and the execution of skilled movements.


Assuntos
Força da Mão , Córtex Motor/metabolismo , Destreza Motora/fisiologia , Músculo Esquelético/metabolismo , Neurônios/metabolismo , Caminhada , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína X Associada a bcl-2/genética , Animais , Axônios/metabolismo , Axônios/patologia , Western Blotting , Caspases/metabolismo , Estimulação Elétrica , Eletromiografia , Imuno-Histoquímica , Camundongos , Microscopia Confocal , Córtex Motor/citologia , Córtex Motor/fisiologia , Músculo Esquelético/fisiologia , Neurônios/patologia , Neurônios/fisiologia , Técnicas de Patch-Clamp , Transdução de Sinais , Medula Espinal/citologia
8.
PLoS One ; 10(3): e0121550, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25826454

RESUMO

Cell adhesion molecules belonging to the immunoglobulin superfamily (IgSF) control synaptic specificity through hetero- or homophilic interactions in different regions of the nervous system. In the developing spinal cord, monosynaptic connections of exquisite specificity form between proprioceptive sensory neurons and motor neurons, however, it is not known whether IgSF molecules participate in regulating this process. To determine whether IgSF molecules influence the establishment of synaptic specificity in sensory-motor circuits, we examined the expression of 157 IgSF genes in the developing dorsal root ganglion (DRG) and spinal cord by in situ hybridization assays. We find that many IgSF genes are expressed by sensory and motor neurons in the mouse developing DRG and spinal cord. For instance, Alcam, Mcam, and Ocam are expressed by a subset of motor neurons in the ventral spinal cord. Further analyses show that Ocam is expressed by obturator but not quadriceps motor neurons, suggesting that Ocam may regulate sensory-motor specificity in these sensory-motor reflex arcs. Electrophysiological analysis shows no obvious defects in synaptic specificity of monosynaptic sensory-motor connections involving obturator and quadriceps motor neurons in Ocam mutant mice. Since a subset of Ocam+ motor neurons also express Alcam, Alcam or other functionally redundant IgSF molecules may compensate for Ocam in controlling sensory-motor specificity. Taken together, these results reveal that IgSF molecules are broadly expressed by sensory and motor neurons during development, and that Ocam and other IgSF molecules may have redundant functions in controlling the specificity of sensory-motor circuits.


Assuntos
Moléculas de Adesão Celular/metabolismo , Gânglios Espinais/embriologia , Imunoglobulinas/metabolismo , Medula Espinal/embriologia , Animais , Axônios , Moléculas de Adesão Celular/genética , Gânglios Espinais/metabolismo , Imunoglobulinas/genética , Camundongos , Camundongos Mutantes , Neurônios Motores/metabolismo , RNA Mensageiro/genética , Medula Espinal/metabolismo
9.
Nature ; 497(7450): 490-3, 2013 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-23644455

RESUMO

Semaphorin 3A (Sema3A) is a diffusible axonal chemorepellent that has an important role in axon guidance. Previous studies have demonstrated that Sema3a(-/-) mice have multiple developmental defects due to abnormal neuronal innervations. Here we show in mice that Sema3A is abundantly expressed in bone, and cell-based assays showed that Sema3A affected osteoblast differentiation in a cell-autonomous fashion. Accordingly, Sema3a(-/-) mice had a low bone mass due to decreased bone formation. However, osteoblast-specific Sema3A-deficient mice (Sema3acol1(-/-) and Sema3aosx(-/-) mice) had normal bone mass, even though the expression of Sema3A in bone was substantially decreased. In contrast, mice lacking Sema3A in neurons (Sema3asynapsin(-/-) and Sema3anestin(-/-) mice) had low bone mass, similar to Sema3a(-/-) mice, indicating that neuron-derived Sema3A is responsible for the observed bone abnormalities independent of the local effect of Sema3A in bone. Indeed, the number of sensory innervations of trabecular bone was significantly decreased in Sema3asynapsin(-/-) mice, whereas sympathetic innervations of trabecular bone were unchanged. Moreover, ablating sensory nerves decreased bone mass in wild-type mice, whereas it did not reduce the low bone mass in Sema3anestin(-/-) mice further, supporting the essential role of the sensory nervous system in normal bone homeostasis. Finally, neuronal abnormalities in Sema3a(-/-) mice, such as olfactory development, were identified in Sema3asynasin(-/-) mice, demonstrating that neuron-derived Sema3A contributes to the abnormal neural development seen in Sema3a(-/-) mice, and indicating that Sema3A produced in neurons regulates neural development in an autocrine manner. This study demonstrates that Sema3A regulates bone remodelling indirectly by modulating sensory nerve development, but not directly by acting on osteoblasts.


Assuntos
Remodelação Óssea , Osso e Ossos/inervação , Osso e Ossos/metabolismo , Semaforina-3A/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , Osso e Ossos/anatomia & histologia , Diferenciação Celular , Células Cultivadas , Feminino , Masculino , Camundongos , Tamanho do Órgão , Osteoblastos/citologia , Osteoblastos/metabolismo , Semaforina-3A/deficiência , Semaforina-3A/genética , Células Receptoras Sensoriais/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...